Search results for "Magnetic structure"

showing 10 items of 40 documents

Determination of fine magnetic structure of magnetic multilayer with quasi antiferromagnetic layer by using polarized neutron reflectivity analysis

2020

We carried out polarized neutron reflectivity (PNR) analysis to determine the fine magnetic structure of magnetic multilayers with quasi-antiferromagnetic (quasi-AFM) layers realized by 90-deg coupling using two Co90Fe10 layers, and quantitatively evaluated the magnetization of quasi-AFM layers. Two types of samples with different buffer layers, Ru buffer and a NiFeCr buffer, were investigated and the average angles between the respective magnetization of the two Co90Fe10 layers were estimated to be +/− 39 degrees and +/− 53 degrees. In addition, less roughness was found in the NiFeCr buffer sample resulting stronger 90-deg coupling. A perfect quasi-AFM is expected to be realized by a flat …

010302 applied physicsCouplingMaterials scienceCondensed matter physicsMagnetic structure530 PhysicsGeneral Physics and Astronomy02 engineering and technologySurface finish021001 nanoscience & nanotechnology530 Physik01 natural scienceslcsh:QC1-999Buffer (optical fiber)Magnetization0103 physical sciencesAntiferromagnetismNeutron0210 nano-technologyLayer (electronics)lcsh:Physics
researchProduct

Neutron diffraction study of microstructural and magnetic effects in fine particle NiO powders

2016

Nickel oxide powders with grain sizes ranging from 100 to 1500 nm have been studied by high-resolution neutron diffraction. We have found that the atomic structure, the antiferromagnetic ordering, and the value of the nickel magnetic moments inherent in the bulk material of NiO are still preserved and are nearly independent of the average size of the grains. The sizes of the coherently scattering atomic and magnetic domains were estimated independently owing to a complete separation of the nuclear and magnetic peaks in the neutron diffraction patterns. It is shown that the finite-size and surface disorder effects in particles at the submicron scale have a more pronounced influence on the ma…

010302 applied physicsMaterials scienceMagnetic structureMagnetic domainMagnetic momentCondensed matter physicsScatteringMagnetismNickel oxideNeutron diffraction02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsCrystallography0103 physical sciencesParticle0210 nano-technologyphysica status solidi (b)
researchProduct

Atomic, electronic and magnetic structure of an oxygen interstitial in neutron-irradiated Al2O3 single crystals

2020

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under Grant Agreement No. 633053 and Enabling Research project: ENR-MFE19.ISSP-UL-02 “Advanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion application”. The views and opinions expressed herein do not necessarily reflect those of the European Commission. In addition, the research leading to these results has received funding from the Estonian Research Council grant (PUT PRG619).

010302 applied physicsMultidisciplinaryMaterials scienceMagnetic momentMagnetic structurelcsh:Rlcsh:MedicineFormal charge02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicslaw.inventionIonBond lengthlaw0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Density functional theorylcsh:Q0210 nano-technologyElectron paramagnetic resonanceGround statelcsh:ScienceScientific Reports
researchProduct

Structural properties of the quaternary Heusler alloy Co2Cr1−xFexAl

2007

The quarternary substitutional series Co2Cr1?xFexAl was investigated by means of surface and bulk sensitive techniques in order to exploit its structural and compositional properties. Both bulk and powder samples of the alloy series were investigated to obtain specific information about this material.The long range order was determined by means of x-ray diffraction and neutron diffraction, while the site specific (short range) order was proved by extended x-ray absorption fine structure spectroscopy. The magnetic structure was investigated by M?ssbauer spectroscopy in transmission and scattering modes in order to compare and separate powder and bulk properties. The chemical composition was …

Auger electron spectroscopyAcoustics and UltrasonicsMagnetic structureChemistryNeutron diffractionOxideCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundCrystallographyChemical physicsEmission spectrumThin filmAbsorption (electromagnetic radiation)SpectroscopyJournal of Physics D: Applied Physics
researchProduct

Dichroism in angular resolved VUV-photoemission from the (0001) surfaces of thin Gd and Nd films epitaxially grown on W(110)

1999

We present investigations of the electronic and magnetic structure of the Rare Earth valence states. In particular, we have examined ultra thin films (≤ 10 ML) of the rare earth metals gadolinium and neodymium epitaxially grown on tungsten (110). Various experiments on dichroism in angular resolved photoemission have been performed using circularly as well as linearly polarised light in the VUV-range with photon energies below 40 eV. A special emphasis was placed on the investigation of the surface state, which was observed for both Gd and Nd. A very small magnetic splitting of about 25 meV was observed for the surface state of ferromagnetic Gd. A magnetic ordering of a Nd-monolayer on a re…

Circular dichroismValence (chemistry)Materials scienceMagnetic structurechemistry.chemical_elementElectronic structureDichroismCondensed Matter PhysicsNeodymiumMolecular physicsElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceParamagnetismNuclear magnetic resonancechemistryCondensed Matter::Strongly Correlated ElectronsElectronic band structure
researchProduct

Helical magnetic structure and the anomalous and topological Hall effects in epitaxial B20 Fe$_{1-y}$Co$_y$Ge films

2018

Epitaxial films of the B20-structure compound Fe1−yCoyGe were grown by molecular beam epitaxy on Si (111) substrates. The magnetization varied smoothly from the bulklike values of one Bohr magneton per Fe atom for FeGe to zero for nonmagnetic CoGe. The chiral lattice structure leads to a Dzyaloshinskii-Moriya interaction (DMI), and the films' helical magnetic ground state was confirmed using polarized neutron reflectometry measurements. The pitch of the spin helix, measured by this method, varies with Co content y and diverges at y∼0.45. This indicates a zero crossing of the DMI, which we reproduced in calculations using first-principles methods. We also measured the longitudinal and Hall r…

Condensed Matter - Materials ScienceMaterials scienceMagnetic structureSpin polarizationMagnetoresistanceMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyTopology01 natural sciencesMagnetic fieldBohr magnetonMagnetizationsymbols.namesakeElectrical resistivity and conductivity0103 physical sciencessymbolsddc:530010306 general physics0210 nano-technologyGround state
researchProduct

Neutron diffraction studies of the molecular compound [Co 2(bta)]n (H4bta =1,2,4,5-benzenetetracarboxylic acid): In the quest of canted ferromagnetism

2013

The exchange mechanism and magnetic structure of the organic-inorganic layered molecule-based magnet [Co2(bta)]n (1) (H 4bta =1,2,4,5-benzenetetracarboxylic acid) have been investigated through variable-temperature magnetic susceptibility measurements and supported with a series of neutron diffraction experiments. Cryomagnetic studies have shown an antiferromagnetic ordering at a transition temperature of 16 K that is followed by the appearance of a weak ferromagnetism below 11 K. The weak antiferromagnetic interlayer interaction plays an important role in this system in spite of the long interlayer separation. A ferromagnetic ordering is induced by applied magnetic fields greater than 1800…

Condensed matter physicsMagnetic structureChemistryTransition temperatureNeutron diffractionMagnetic susceptibilityMagnetic fieldInorganic ChemistryCondensed Matter::Materials ScienceNuclear magnetic resonanceFerromagnetismMagnetAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsPhysical and Theoretical ChemistryInorganic Chemistry
researchProduct

Geometric, electronic, and magnetic structure ofCo2FeSi: Curie temperature and magnetic moment measurements and calculations

2005

In this work a simple concept was used for a systematic search for materials with high spin polarization. It is based on two semiempirical models. First, the Slater-Pauling rule was used for estimation of the magnetic moment. This model is well supported by electronic structure calculations. The second model was found particularly for ${\mathrm{Co}}_{2}$ based Heusler compounds when comparing their magnetic properties. It turned out that these compounds exhibit seemingly a linear dependence of the Curie temperature as function of the magnetic moment. Stimulated by these models, ${\mathrm{Co}}_{2}\mathrm{FeSi}$ was revisited. The compound was investigated in detail concerning its geometrical…

Curie–Weiss lawMaterials scienceExtended X-ray absorption fine structureCondensed matter physicsMagnetic momentMagnetic structureCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceMagnetizationParamagnetismCurie's lawCurie temperatureCondensed Matter::Strongly Correlated ElectronsPhysical Review B
researchProduct

Stability and magnetic properties of Fe double layers on Ir (111)

2018

We investigate the interplay between the structural reconstruction and the magnetic properties of Fe doublelayers on Ir (111)-substrate using first-principles calculations based on density functional theory and mapping of the total energies on an atomistic spin model. We show that, if a second Fe monolayer is deposited on Fe/Ir (111), the stacking may change from hexagonal close-packed to bcc (110)-like accompanied by a reduction of symmetry from trigonal to centered rectangular. Although the bcc-like surface has a lower coordination, we find that this is the structural ground state. This reconstruction has a major impact on the magnetic structure. We investigate in detail the changes in th…

Double layer (biology)Condensed Matter - Materials ScienceMaterials scienceCondensed matter physicsMagnetic structureStackingMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyMagnetocrystalline anisotropy01 natural sciencesCondensed Matter::Materials Science0103 physical sciencesMonolayerCondensed Matter::Strongly Correlated ElectronsDensity functional theory010306 general physics0210 nano-technologyGround stateAnisotropyPhysical Review B
researchProduct

Comparative density-functional LCAO and plane-wave calculations ofLaMnO3surfaces

2005

We compare two approaches to the atomic, electronic, and magnetic structures of LaMnO3 bulk and the (001), (110) surfaces—hybrid B3PW with optimized LCAO basis set (CRYSTAL-2003 code) and GGA-PW91 with plane-wave basis set (VASP 4.6 code). Combining our calculations with those available in the literature, we demonstrate that combination of nonlocal exchange and correlation used in hybrid functionals allows to reproduce the experimental magnetic coupling constants Jab and Jc as well as the optical gap. Surface calculations performed by both methods using slab models show that the antiferromagnetic (AF) and ferromagnetic (FM) (001) surfaces have lower surface energies than the FM (110) surfac…

Electron densityMaterials scienceCondensed matter physicsMagnetic structureLinear combination of atomic orbitalsAtomPlane waveCondensed Matter PhysicsMolecular physicsBasis setSurface energyElectronic Optical and Magnetic MaterialsHybrid functionalPhysical Review B
researchProduct